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Computation of Water and Air Flow with Submerged Hydrofoil by
Interface Capturing Method

Seung-Hyun Kwag*
School of Mechanical Engineering, Halla University

Free-surface flows with an arbitrary deformation, induced by a submerged hydrofoil, are
simulated numerically, considering two-fluid flows of both water and air. The computation is
performed by a finite volume method using unstructured meshes and an interface capturing
scheme to determine the shape of the free surface. The method uses control volumes with an
arbitrary number of faces and allows cellwise local mesh refinement. The integration in space
is of second order, based on midpoint rule integration and linear interpolation. The method is
fully implicit and uses quadratic interpolation in time through three time levels. The linear
equations are solved by conjugate gradient type solvers, and the non-linearity of equations is
accounted for through Picard iterations. The solution method is of pressure-correction type and
solves sequentially the linearized momentum equations, the continuity equation, the conserva­
tion equation of one species, and the equations for two turbulence quantities. Finally, a
comparison is quantitatively made at the same speed between the computation and experiment
in which the grid sensitivity is numerically checked.

Key Words: Two Fluid Flows, Finite Volume Method, Submerged Hydrofoil, Free Surface,
Viscous Flow Simulation, Interface Capturing Scheme

Nomenclature-------------
p : Fluid density
n : Unit normal vector outwards
V : Control volume
e : Angle normal to the interface
v : Fluid velocity vector
Vb : Velocity of the control surface
p : Pressure
hi : Body force
f.L : Dynamic viscosity of fluid
rij : Effective stress
c : Void fraction of liquid

1. Introduction

Computation of flows, including the deforma­
tion of the free surface, is one of the big chal-
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lenges in fluid mechanics. Many methods (Farmer
et al., 1994, Muzaferiza et al., 1997) of this kind
have been developed and successfully applied to
flows. However, if the body form is complicated,
these methods are difficult to use because the grid
has to be adapted both to the free surface and
body shape: the grid may deform too much in this
process and a re-gridding may become necessary.
When the body form is relatively simple, the
interface tracking approach is convenient in
which only the water flow is computed and the
grid moves to adapt to the free surface.

Another difficulty in handling interface track­
ing methods is the breaking, overturning, or wave
splashing. In many cases, it is important to com­
pute the flows of both liquid and gas simultane­
ously, especially when the gas is enclosed by
liquid and bouyancy effects become important.
For this reason, interface capturing methods have
to be used. The MAC (Harlow et aI., 1965) and
VOF (Hirt et aI., 1981) methods are of this kind,
although the air flow is not actually computed.
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(5)

Recently the density function method
(Kawamura et aI., 1994) and two-fluid models
(Ubbink, 1997, Muzaferija et aI., 1998) have been
developed. The last is used here to demonstrate its
applicability to the submerged hydrofoil flows. It
is based on the finite volume (FV) approach and
uses unstructured grids with arbitrary polyhedral
control volumes (CVs). Both air and water are
considered as a single fluid with variable prop­
erties. An additional transport equation for the
void fraction of liquid is solved to determine the
interface between the two fluids. A special discret­
ized scheme for convective fluxes in the void
fraction equation is used to ensure the sharpness
of the interface. The computational results are
presented for the viscous flows induced by
NACA 0012 hydrofoil.

2. Basic Euations and Numerical
Strategy

Basic equations for mass, momentum and vol­
ume fraction are expressed in their integral form,
which for an arbitrary, moving control volume
can be written as,

---.!L rpdV+ rP(V-Vb) • ndS=O (I)
dt)v )5

~ lpuidV+1PUi(v - Vb) • ndS

= 1(rij- pii) • ndS+lpbidV (2)

---.!L rcdV+ rC(V-Vb) • ndS=O (3)
dt)v )5

where p is the fluid density, V is the control
volume (CV) bounded by a closed surface S, v is
the fluid velocity vector whose Cartesian compo­
nents are Ui, Vb is the velocity of the control
surface, t is the time, p is the pressure, c is the
void fraction of liquid, b, is the body force in the
direction of the Cartesian coordinate Xi' n is the
unit normal to S and directed outwards, and rij
are the components of the viscous stress tensor
defined for Newtonian incompressible fluids con­
sidered here as,

- (OUi+OUi) (4)
rij- f-/ OXi OXi

with f-/ being the dynamic viscosity of the fluid.

When the control volume moves, the so called
space conservation law (SCL) has also to be
satisfied; it is expressed by the following relation
between the rate of change of CV and its surface

velocity:

---.!L rdV - rVb. ndS=O
dt)v )5

These equations are applied to each CV and
discretized in order to obtain one algebraic equa­
tion per CV; each equation involves the unknown
from the CV-center (where all knowns are stor­
ed) and from a certain number of neighboring
CVs. Here second-order approximations (linear
interpolation, central differences, and midpoint
rule integration) are used to evaluate the integrals
in space and time. The method is fully implicit, i.
e., the spatial integrals are evaluated at the new
time level, while the old values appear only in the
approximation of the time derivative (linear or
quadratic backward scheme). For more details on
discretization methods, see (Ubbink, 1997,
Muzaferiza et aI., 1998)

Both fluids are treated as single effective fluids
whose properties vary in space according to the
volume fraction of each phase, i. e.,

P=Plc+p2(I-c), f-/=f-/lC+f-/2(l-C) (6)

where subscripts I and 2 denote the two fluids
(liquid and gas). If one CV is partially filled with
one fluid and partially with the other (i. e., O~c
~ I), it is assumed that both fluids have the same
velocity and pressure. The free surface does not
represent a boundary and no boundary condi­
tions need to be prescribed on it. The critical issue
in this type of methods is the discretization of
convective term in Eq. (3). Since c must obey the
bounds O~c~ I, one has to ensure that the
scheme does not generate overshoots or under­
shoots, but it should also keep the interface as
sharp as possible, since the fluids should not mix.
As noted above, the solution domain extends over
both fluids, and all the conservation equations are
solved in the whole domain. At the initial time
step, the discretization of c is prescribed, defining
the initial location of liquid and the shape of the
free surface. Equation (3) is for the void fraction
of one phase, c. The grid extends over both liquid
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where subscripts' U' and 'D' denote nodes up­
stream and downstream of the cell-center C, and
r is the position vector. Should the cell-center

(8)

(12)

I
Ce if Cc<O.O

__ 2Ce if 0.0:::;: Ce:::;:0.5 (9)
Cj- I if 0.5:::;: Ce:::;: 1.0

Ce if 1.0:::;: Cc

1
Cj if Co <0.3

-* - ce - )0.7-Co 'f03 07C j= Cc+ c i>: c c 0.7-0.3 1 . :::;:Co::;; .

Cc if 0.7:::;: Co

( 10)

Cj * *= Cj *.Jcose+ Cc (I - .Jcose) (I I)

3. Application and Discussion

where e represents the angle between the nor­
mal to the interface (represented by the gradient
vector of c) and the normal to the cell face.
Finally, the cell-face value of c is computed
according to Eq. (7) as

value Cc turn out to be smaller than zero or
larger than unity, this means that the profile of C

is not monotonic and the numerical diffusion is
needed to get rid of oscillations; first-order up­
wind scheme is then used to compute the cell-face
values. For values of cc between zero and unity,
one can choose any dependency from the shaded
region of the NVD-diagram in Fig. I. The partic­
ular choice selected here is indicated in Fig. I as
HRIC (high resolution interface capturing)
scheme; it is a combination of a linear upwind
and a downwind scheme. The cell-face value
resulting from the HRIC-scheme is further cor­
rected according to the local Courant number and
the angle between the free surface and the cell
face. The aim of these corrections is to avoid
instability problems at high Courant numbers (by
adding more of the upwind scheme) and the
occurrence of steps in the free surface. The follow­
ing definitions are used.

In order to demonstrate the suitability of the
solution method described above, results of com­
putations are presented. The aim of the present
example is to show that the interface capturing
method can treat the extreme deformation of the

(7)C(r)

and gas; one sets c= I in CVs filled by water and
c=O in CVs filled by air. The change of c is
governed by the transfort Eq. (3). The only
scheme which unconditionally satisfies the boun­
dedness criterion is the first order upwind scheme:
however it can not be used due to excessive
numerical diffusion, which smears the interface so
badly that the two fluids mix over a wide region.

On the other hand, any of the higher order
schemes tends to produce over-and undershoot in
the vicinity of discontinuities. One can resort total
variation capturing (TVD) and essentially non
-oscillating (ENO) schemes. However, the inter­
face capturing in the free surface flows has some
special features which need to be considered. One
comes from the fact that the convective flux out of
one CV must not transport more of one fluid than
is available in the donor cell. During the compu­
tation of the cell-face values of c, the orientation
and the local Courant number should be taken
into account of.

The sharpness of the interface without over­
and undershoots can be achieved by limiting the
approximation of the cell-face value to lie in the
shaded area of the so called normalized variable
diagram (NVD) (Leonard, 1997) shown in Fig.
I. The local normalized variable c in the vicinity
of the cell-center C is defined

Cc
Fig. 1 Normalized variables diagram (CDS: Cen­

tral DitT. Scheme, DDS: Downward, UDS:
Upwind, HRIC: High Resolution Interface
Capturing)



792 Seung-Hyun Kwag

free surface including its overturning and air
enclosures.

The submerged hydrofoil is used for computa­
tion whose angle of attack is 30°; section shape is
NACAOOI2, Froude number is 0.567, Reynolds
number is 1()3 and 1.776X 106, and turbulence
model is of the k-£ RNG type. The number of
cell is 13540, time increment is 0.0005 in a non­
dimensional unit, and the reference pressure is 105

Pa. Here the nondimensional time t means the
ratio of the moved distance to the length of the
body. In case t= 1.0, the moved distance equals to
exactly the length of the hydrofoil.

The minimum value of y+ is 5 and maximum
410. The calculated total drag is 25.60 N and total
lift force is 202.90 N. The computational condi­
tions for the laminar and turbulent flows are as
follows.

- Linear algebraic equation solver: Incomplete
Cholesky preconditioned conjugate gradient
-Gradient calculation: Least square fit
-Free surface: Front capturing model
-Surface tension coeff. : 7.4x 10-2 Nyrn
-Piezometric pressure, no slip (wall)
external: zero gradient
-Solution control

mom- turbu-
mass

entum lence

relaxation
0.9 0.2 0.9

factor

blending
0.9 1.0 1.0

factor

solver
0.1 0.05 1.0

tolerance

iteration
50 500 50

number

Figure 2 shows the coordinate system for com­
putation in which a is the angle of attack and
d submergence depth. Figure 3 shows the comput­
ed results of the two fluids including free-surface
for the laminar flows. Both liquid and gas flows
are computed. This is important when gas is
trapped in liquid or when gas flows with a high
velocity. Since the grid does not have to be adapt-

rr:---------
n~x­U,

Fig. 2 Coordinate system for computation

ed to the shape of the free surface, problems with
grid adaptations are avoided. The unstructured
grid can be seen in Fig. 3(a) where the finer grid
is used in some part of the free-surface and
behind the trailing edge mostly influenced by the
hydrofoil. The volume fraction is simulated along
the time from t=3.0 to 5.0. The breaking or
overturning is well captured without any numeri­
cal difficulties. This is one of the advantages of
the interface capturing method. The overall pres­
sure contour is seen in Fig. 3 (c) with a perspec­
tive view around the leading edge. The velocity
vectors are simulated for two fluids: air and water
region. In the computation of laminar flows, the
free surface may deform in an arbitrary manner;
the present interface capturing method can simu­
late the shape of the free surface with the surface
tension.

Figure 4 shows the computed results for the
turbulent flows. As seen in Fig. 4(a), the present
method predicts well the extreme deformation of
the free-surface. The pressure, velocity and vol­
ume fraction are seen in Fig. 4(b), (c) and (d),
respectively. In the numerical solution procedure,
the outer iteration of momentum and pressure
correction equations are performed first in which
the value of the eddy viscosity is based on the
value of k and £ at the end of the preceding
iteration. After this has been completed, an outer
iteration of the turbulent kinetic energy and
dissipation equations is made. Since these equa­
tions are highly nonlinear, they have to be linear­
ized prior to iteration. After completing an itera­
tion of the turbulence model equations, it is
necessary to recalculate the eddy viscosity and
start a new outer iteration. Figure 4(e) shows the
contour of the kinetic energy obtained by the
turbulence model of the k-e RNG type.
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Fig. 3(a) Unstructured grid view (laminar)

Fig. 3 (b) Volume fraction (laminar)

Figures 5 and 6 sho w the comparison of solu­

tions obtained by using the inte rface-tracking and

capturing method, respect ively. This was also

found in other applications (Muzaferija et al.,

1998) . The computations were perfo rmed using

four systemat icall y refined grids with 1004, 4016,

16064 and 64256 CVs respectively, in order to

A 1.409&+02

o 8.317&+01

G 2.541&+01

J ·3.235e+<l1

M '9.0106+01

P ·1.479&+02

S ·2.056e+02
V ·2.6348+02
V -3.211&+02
b -3.789&+02

e -4.366e+02

Fig. 3 (c) Pressure distribution (laminar)

Fig. 3 (d) Velocity vectors (laminar)

assess the discretization errors. Figur e 5 shows the

wave profiles computed on the four grids using

the interface- tracking method, compa red with

experimental data (Duncan, 1983). The differ ence

between solutions on subsequent grids is redu cing

with grid refin ement , indicating convergence

to ward s a grid-independent solution. The com­

par ison with the experimental data shows that the

grid-i ndependent numerical solution will still
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Fig. 4(a) Free surface height (turbulent)

t=3.25

t=3.00

1.2o 0.2 OA 0.6 0.8
Horizoot:ll distance [m]

Fig. 4(e) Kinetic energy contour
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Fig. 4(d) Volume fraction (turbulent)

A 1.3C280Q2
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~ b -3.81a..oz'< ...........

Fig. 4(b) Pressure distribution (turbulent)

Fig. 4(c) Velocity vectors (turbulent) (above:
near free-surface)

appreciably differ from experimental observation.

While the maximum elevation appears to be

almost the same in the experiment and in the

simulation, the trough depths and the wavelength

are smaller in the simulation than in the experi-

Fig. 5 Free-surface profile in the flow around a
subsequent NACA00l2 hydrofoil computed
by interface-tracking method on the four
systematically refined grids, compared to
experimental data of Duncan (1983)
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computation and experiment in which the grid

sensitivity is numerically checked.
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Fig. 6 Free-surface profile in the flow around
NACAOOl2 hydrofoil computed by the inter­
face-capturing method on the third grid from
Fig. 5 (16064 CV plus an additional 2000
CVs in the air region above the free surface),
compared to experimental data of Duncan
( 1983)
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ment.
The computation conditions are as below; sub­

merged hydrofoil of NACAOOI2, chord length

(te ) 203mm, maximum thickness 25.4 mm, 61 mm
located behind the nose, angle of attack 50, tow­
ing velocity 0.8 m/sec and Froude number 0.567.
Figure 6 shows the free-surface profile in the flow

by the interface capturing method on the third
grid from Fig. 5, compared to experimental data
of Duncan (1983).

4. Concluding Remarks

O.oos

0.01
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o

The interface capturing method allows the
computation of flows around bodies of arbitrary

complexity, since the grid need not to be adapted
to the shape of the free surface. The interface
capturing method presented here is applicable to
flows with an arbitrary deformation of the free

surface. It can capture free-surface nonlinear
flows induced by a submerged hydrofoil, includ­
ing breaking waves when the grid is locally

refined. The results are comparable to those from
the interface tracking methods with moving grids.

Besides, the solution method allows the use of
arbitrary control volumes and cellwise local mesh
refinement, which is very useful for the complex

flows. Finally, a comparison is made between the


